Chloramine (Mono)

Indophenol Method¹

0.1 to 10.0 mg/L Cl₂ (HR)

Scope and application: For chloraminated drinking water and chlorinated wastewater. This product has not been evaluated to test for chlorine and chloramines in medical applications in the United States.

¹ Patent Pending

Test preparation

Instrument-specific information

Table 1 shows all of the instruments that have the program for this test. The table also shows adapter and light shield requirements for the instruments that use them.

To use the table, select an instrument, then read across to find the applicable information for this test.

Table 1 Instrument-specific information for test tubes

Instrument	Adapters	Light shield
DR 6000, DR 5000	_	
DR 3900	_	LZV849
DR 3800, DR 2800, DR 2700	_	LZV646
DR 1900	9609900 (D ¹)	
DR 900	4846400	Cover supplied with the instrument

¹ The D adapter is not available with all instrument versions.

Before starting

Samples must be analyzed immediately after collection and cannot be preserved for later analysis.

Install the instrument cap on the DR 900 cell holder before ZERO or READ is pushed.

DR 3900, DR 3800, DR 2800 and DR 2700: Install the light shield in Cell Compartment #2 before this test is started.

For the best results, measure the reagent blank value for each new lot of reagent. Replace the sample with deionized water in the test procedure to determine the reagent blank value. Subtract the reagent blank value from the sample results automatically with the reagent blank adjust option.

Review the Safety Data Sheets (MSDS/SDS) for the chemicals that are used. Use the recommended personal protective equipment.

Dispose of reacted solutions according to local, state and federal regulations. Refer to the Safety Data Sheets for disposal information for unused reagents. Refer to the environmental, health and safety staff for your facility and/or local regulatory agencies for further disposal information.

Items to collect

Description	Quantity
Light shield (For information about sample cells, adapters or light shields, refer to Instrument- specific information on page 1.)	1
High range Monochloramine Diluent Vials	1
Monochlor F Reagent Powder Pillow	1
Funnel, micro, poly	1

Method 10172 **Test 'N Tube**

Items to collect (continued)

Description	Quantity
Pipet, Mohr glass, 2.00 mL	1
Test tube rack	1

Refer to Consumables and replacement items on page 5 for order information.

Sample collection and storage

- Analyze samples immediately after collection.
- Collect samples in clean glass bottles.
- Open the sample valve or spigot and let the water flow for a minimum of 5 minutes.
- Rinse the sample bottle several times with the sample and let the sample overflow each time, then cap the container so that there is no head space (air) above the sample.

Test 'N Tube procedure

1. Start program 67, Monochloramine HR TNT. For information about sample cells, adapters or light shields, refer to Instrument-specific information on page 1.

Note: Although the program name can be different between instruments, the program number does not change.

2. Remove the cap from a HR Monochloramine Diluent vial. Use a pipet to add 2.0 mL of sample to the vial..

3. Put the cap on the vial. Invert to mix.

4. Clean the vial.

5. Insert the vial into the 16-mm cell holder.

6. Push **ZERO**. The display shows 0.00 mg/L Cl₂.

7. Remove the vial from the cell holder.

8. Add the contents of one Monochlor F powder pillow to the sample.

9. Put the cap on the vial. Shake the vial for about 20 seconds to dissolve the reagent.

10. Start the instrument

time starts.

timer. A 5-minute reaction

11. When the timer expires, insert the vial into the cell holder.

12. Push READ. Results show in mg/L Cl_2 .

Interferences

Table 2 shows the substances that have been tested for interference and do not interfere at or below the indicated levels. Table 3 suggests treatments for interferences.

Table 2 Non-interfering substances

Interfering substance	Interference level
Alanine	1 mg/L N
Aluminum	10 mg/L Al
Bromide	100 mg/L Br-
Bromine	15 mg/L Br ₂
Calcium	1000 mg/L as CaCO ₃
Chloride	18,000 mg/L CI⁻
Chlorine Dioxide	5 mg/L CIO ₂
Chromium (III)	5 mg/L Cr ³⁺
Copper	10 mg/L Cu
Cyanide	10 mg/L CN [−]
Dichloramine	10 mg/L as Cl ₂
Fluoride	5 mg/L F [_]
Free Chlorine	10 mg/L Cl ₂
Glycine	1 mg/L N
Iron (II)	10 mg/L Fe ²⁺
Iron (III)	10 mg/L Fe ³⁺
Lead	10 mg/L Pb
Magnesium	1000 mg/L as CaCO ₃
Manganese (VII)	10 mg/L
Nitrate	100 mg/L N
Nitrite	50 mg/L N
Phosphate	100 mg/L PO ₄
Silica	100 mg/L SiO ₂
Sulfate	2600 mg/L SO ₄ ²⁺
Sulfite	50 mg/L SO ₃ ^{2–}

Table 2 Non-interfering substances (continued)		
Interfering substance	Interference level	
Tyrosine	1 mg/L N	
Urea	10 mg/L N	
Zinc	5 mg/L Zn	

Table 3 Interfering substances			
Substance	ubstance Effect Interference level Recommended treatment		Recommended treatment
Ozone	-	Above 1 mg/L	Usually does not coexist with monochloramine.
Sulfide	+	A "rust" color develops if present.	Usually does not coexist with monochloramine.
Thiocyanate	_	Above 0.5 mg/L	This method will tolerate up to 2 mg/L.

Accuracy check

Standard solution method

Items to collect:

- Buffer Powder Pillow, pH 8.3
- Nitrogen, Ammonia Standard Solution, 100-mg/L as NH₃-N
- Chlorine Solution Ampules, 50-70 mg/L
- 100-mL Class A volumetric flask
- 50-mL graduated cylinder
- Pipet, TenSette[®], 0.1–1.0 mL and tips
- Pipets, Volumetric, 2-mL Class A and Mohr, 5-mL
- Pipet bulb
- Organic-free water
- 1. Prepare a 4.5-mg/L (as Cl₂) monochloramine standard immediately before use as follows.
 - a. Add the contents of one Buffer Powder Pillow, pH 8.3 to approximately 50 mL of organic-free water in a clean 100-mL Class A volumetric flask. Swirl to dissolve the powder.
 - b. Use a Class A volumetric pipet to add 2.00 mL of Nitrogen, Ammonia Standard Solution, 100-mg/L as NH₃–N into the flask.
 - c. Dilute to the mark with organic-free water. Mix well. This is a 2.00-mg/L buffered ammonia standard.
 - d. Use a graduated cylinder to add 50.00 mL of the buffered ammonia standard into a clean 100-mL beaker. Add a stir bar.
 - e. Find the exact concentration of the Chlorine Solution Ampules, 50-70 mg/L from the label on the package.
 - f. Calculate the volume of the Chlorine Solution to add to the ammonia standard: mL chlorine solution required = 455/(free chlorine concentration).
 - **g.** Open an ampule and use a glass Mohr pipet to add the calculated amount of Chlorine Solution slowly to the ammonia standard in the beaker. Keep the beaker on a stir-plate at medium speed during the chlorine addition.
 - h. Stir the monochloramine solution for 1 minute after the Chlorine Solution addition is complete.
 - i. Quantitatively transfer the monochloramine solution to a clean 100-mL Class A volumetric flask. Dilute to the mark with organic-free water and mix well. This is a nominal 4.5-mg/L (as Cl₂) monochloramine standard.
- 2. Use this standard within 1 hour of preparation. Use the test procedure to measure the concentration of the monochloramine standard solution.

3. Compare the expected result to the actual result.

Note: The factory calibration can be adjusted slightly with the standard adjust option so that the instrument shows the expected value of the standard solution. The adjusted calibration is then used for all test results. This adjustment can increase the test accuracy when there are slight variations in the reagents or instruments.

Method performance

The method performance data that follows was derived from laboratory tests that were measured on a spectrophotometer during ideal test conditions. Users can get different results under different test conditions.

Program	Standard	Precision (95% confidence interval)	Sensitivity Concentration change per 0.010 Abs change
67	5.9 mg/L Cl ₂	5.6–6.2 mg/L Cl ₂	0.1 mg/L Cl ₂

Summary of method

In the presence of a cyanoferrate catalyst, monochloramine (NH₂Cl) in the sample reacts with a substituted phenol to form an intermediate monoimine compound. The intermediate couples with excess substituted phenol to form a green-colored indophenol, which is proportional to the amount of monochloramine present in the sample. The measurement wavelength is 655 nm for spectrophotometers or 610 nm for colorimeters.

Consumables and replacement items

Required reagents

Description	Quantity/Test	Unit	ltem no.
Monochloramine, HR, Test 'N Tubes, includes:	_	—	2805145
HR Monochloramine Diluent Vials ¹	1	50/pkg	—
Funnel, micro, poly	1	each	2584335
Monochlor F Reagent Pillow	1	50/pkg	2802246

¹ Not sold separately

Required apparatus

Description	Quantity/Test	Unit	ltem no.
Pipet, Mohr, glass 2.00-mL	1	each	2093636
Pipet filler, safety bulb	1	each	1465100
Test tube rack	1	each	1864100

Recommended standards

Description	Unit	ltem no.
Buffer Powder Pillows, pH 8.3	25/pkg	89868
Chlorine Standard Solution, 10-mL Voluette [®] Ampule, 50–75 mg/L	16/pkg	1426810
Chlorine Standard Solution, 2-mL PourRite [®] Ampules, 50–75 mg/L	20/pkg	1426820
Chlorine Standard Solution, 2-mL PourRite [®] Ampules, 25–30 mg/L	20/pkg	2630020
Nitrogen Ammonia Standard Solution, 100-mg/L as NH ₃ N	500 mL	2406549
Nitrogen, Ammonia Standard Solution, 1000-mg/L NH ₃ -N	1 L	2354153
Water, organic-free	500 mL	2641549

Optional reagents and apparatus

Description	Unit	ltem no.
Ampule Breaker, 2-mL PourRite [®] Ampules	each	2484600
Ampule Breaker, 10-mL Voluette [®] Ampules	each	2196800
Beaker, glass, 100-mL	each	50042H
Clippers	each	96800
Flask, volumetric, Class A, 100-mL glass	each	1457442
Monochloramine/Free Ammonia SpecCheck™ Kit	each	2507500
Paper, pH, 0–14 pH range	100/pkg	2601300
Pipet, Mohr, glass, 5-mL	each	2093437
Pipet, TenSette [®] , 0.1–1.0 mL	each	1970001
Pipet tips for TenSette [®] Pipet, 0.1–1.0 mL	50/pkg	2185696
Pipet tips for TenSette [®] Pipet, 0.1–1.0 mL	1000/pkg	2185628
Pipet, volumetric, Class A, 2-mL	each	1451536
Pipet, volumetric, Class A, 50-mL	each	1451541
Rochelle Salt Solution	29 mL	172533
Shears	each	2369400
Stir bar, octagonal	each	2095352
Stirrer, magnetic	each	2881200

