DOC316.53.01105

# Oxygen Scavengers

#### Iron Reduction Method

Method 8140

3 to 450  $\mu$ g/L DEHA; 5 to 600  $\mu$ g/L carbohydrazide; 9 to 1000  $\mu$ g/L hydroquinone; 13 to 1500  $\mu$ g/L iso-ascorbic acid (ISA); 15 to 1000  $\mu$ g/L methylethyl ketoxime (MEKO)

**Powder Pillows** 

**Scope and application:** For testing residual corrosion inhibitors (oxygen scavengers) in boiler feed water or condensate



# **Test preparation**

# Instrument-specific information

Table 1 shows all of the instruments that have the program for this test. The table also shows sample cell and orientation requirements for reagent addition tests, such as powder pillow or bulk reagent tests.

To use the table, select an instrument, then read across to find the applicable information for this test.

Table 1 Instrument-specific information

| Instrument | Sample cell orientation                  | Sample cell              |
|------------|------------------------------------------|--------------------------|
| DR 6000    | The fill line is to the right.           | 2495402                  |
| DR 3800    |                                          |                          |
| DR 2800    |                                          | 10 mL                    |
| DR 2700    |                                          |                          |
| DR 1900    |                                          |                          |
| DR 5000    | The fill line is toward the user.        |                          |
| DR 3900    |                                          |                          |
| DR 900     | The orientation mark is toward the user. | 2401906  - 25 mL - 20 mL |

## Before starting

Samples must be analyzed immediately after collection and cannot be preserved for later analysis.

Install the instrument cap on the DR 900 cell holder before ZERO or READ is pushed.

The sample temperature should be  $25 \pm 3$  °C (77  $\pm 5$  °F).

Clean all glassware with 6.0 N (50%) hydrochloric acid, then rinse thoroughly with deionized water to remove iron contaminants.

To measure the ferrous iron concentration, repeat the test procedure but do not add the DEHA Reagent 2. To automatically subtract the ferrous iron concentration from the test results, use the reagent blank adjust option. Use the ferrous iron concentration as the reagent blank value.

Review the Safety Data Sheets (MSDS/SDS) for the chemicals that are used. Use the recommended personal protective equipment.

Dispose of reacted solutions according to local, state and federal regulations. Refer to the Safety Data Sheets for disposal information for unused reagents. Refer to the environmental, health and safety staff for your facility and/or local regulatory agencies for further disposal information.

#### Items to collect

| Description                                                                                                                       | Quantity |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|
| Bottle, glass mixing, with 25-mL mark                                                                                             | 2        |
| DEHA Reagent 1 Powder Pillows                                                                                                     | 2        |
| DEHA Reagent 2 Solution                                                                                                           | 1 mL     |
| Dropper, 0.5 and 1.0 mL marks                                                                                                     | 1        |
| Hydrochloric acid, 1:1, 6.0 N                                                                                                     | varies   |
| Water, deionized                                                                                                                  | 25 mL    |
| Sample cells (For information about sample cells, adapters or light shields, refer to Instrument-specific information on page 1.) | 2        |

Refer to Consumables and replacement items on page 4 for order information.

# Sample collection

- Samples must be analyzed immediately after collection and cannot be preserved for later analysis.
- Collect samples in clean, dry glass or plastic bottles with tight-fitting caps.
- Rinse the container several times with the sample before collection.
- Prevent agitation of the sample or exposure to sunlight or air.
- Fill the bottle completely and let the sample overflow. Immediately tighten the cap so that there is no air above the sample.

## Powder pillow procedure



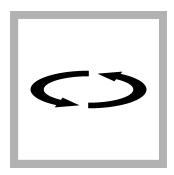
- 1. Start a program:
- 180 O Scav-Carbohy
- 181 O Scav-DEHA
- 182 O Scav-Hydro
- 183 O Scav-ISA
- 184 O Scav-MEKO

For information about sample cells, adapters or light shields, refer to Instrument-specific information on page 1.

**Note:** Although the program name may vary between instruments, the program number does not change.



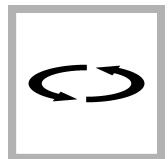
2. Prepare the blank: Fill a mixing bottle with 25 mL of deionized water.




a second mixing bottle with 25 mL of sample.
To measure oxygen scavengers that react quickly with oxygen at room temperature, close the bottle.

3. Prepare the sample: Fill




**4.** Add the contents of one DEHA Reagent 1 Powder Pillow to each mixing bottle.

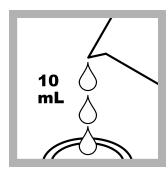


5. Swirl to mix.

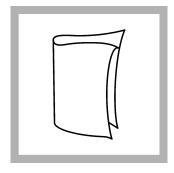


**6.** Use a pipet to add 0.5 mL of DEHA Reagent 2 Solution to each bottle.

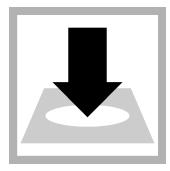



7. Swirl to mix.
Put both mixing bottles in a dark location. A purple color shows if an oxygen scavenger is present in the sample.




timer. A 10-minute (2-minute for hydroquinone) reaction time starts.

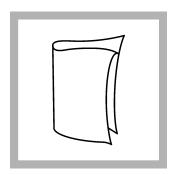
8. Start the instrument


Keep the mixing bottles in the dark during the reaction period.




**9.** Complete the rest of the steps as quickly as possible. When the timer expires, immediately transfer the blank and prepared samples to the sample cells.

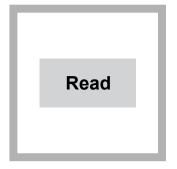



**10.** Clean the blank sample cell.



**11.** Insert the blank into the cell holder.




**12.** Push **ZERO**. The display shows 0 μg/L. For greater accuracy, read the result immediately after the timer expires.



**13.** Clean the prepared sample cell.



**14.** Insert the prepared sample into the cell holder.



15. Push **READ**. Results show in  $\mu$ g/L of the selected oxygen scavenger.

#### Interferences

Substances which reduce ferric iron will cause a positive interference. Substances which complex iron strongly may also interfere.

| Interfering substance                                      | Interference level   |
|------------------------------------------------------------|----------------------|
| Borate (as Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> ) | More than 500 mg/L   |
| Cobalt                                                     | More than 0.025 mg/L |

| Interfering substance            | Interference level                                                                                    |
|----------------------------------|-------------------------------------------------------------------------------------------------------|
| Copper                           | More than 8.0 mg/L                                                                                    |
| Ferrous Iron                     | All levels. Measure and subtract (refer to Before starting on page 1)                                 |
| Hardness (as CaCO <sub>3</sub> ) | More than 1000 mg/L                                                                                   |
| Light                            | Light may cause a positive interference. Keep sample cells in the dark during color development.      |
| Lignosulfonates                  | More than 0.05 mg/L                                                                                   |
| Manganese                        | More than 0.8 mg/L                                                                                    |
| Molybdenum                       | More than 80 mg/L                                                                                     |
| Nickel                           | More than 0.8 mg/L                                                                                    |
| Phosphate                        | More than 10 mg/L                                                                                     |
| Phosphonates                     | More than 10 mg/L                                                                                     |
| Sulfate                          | More than 1000 mg/L                                                                                   |
| Temperature                      | Sample temperatures below 22 °C or above 28 °C (below 72 °F or above 82 °F) may affect test accuracy. |
| Zinc                             | More than 50 mg/L                                                                                     |

## **Method performance**

The method performance data that follows was derived from laboratory tests that were measured on a spectrophotometer during ideal test conditions. Users can get different results under different test conditions.

| Program | Standard | Precision (95% Confidence Interval) | Sensitivity<br>Concentration change per 0.010 Abs change |
|---------|----------|-------------------------------------|----------------------------------------------------------|
| 180     | 299 μg/L | 295–303 μg/L                        | 4 μg/L                                                   |
| 181     | 226 μg/L | 223–229 μg/L                        | 3 μg/L                                                   |
| 182     | 600 µg/L | 591–609 μg/L                        | 8 μg/L                                                   |
| 183     | 886 µg/L | 873–899 μg/L                        | 12 μg/L                                                  |
| 184     | 976 μg/L | 962–990 μg/L                        | 14 μg/L                                                  |

## **Summary of method**

Diethylhydroxylamine (DEHA) or other oxygen scavengers in the sample react with ferric iron in DEHA Reagent 2 Solution to produce ferrous ion in an amount that is equivalent to the DEHA concentration. This solution then reacts with DEHA 1 Reagent, which forms a purple color with ferrous iron that is proportional to the concentration of the oxygen scavenger. This method reacts with all oxygen scavengers and does not differentiate when the sample contains more than one type of oxygen scavenger. The measurement wavelength is 562 nm for spectrophotometers or 560 nm for colorimeters.

## **Consumables and replacement items**

#### Required reagents

| Description                             | Quantity/test | Unit   | Item no. |
|-----------------------------------------|---------------|--------|----------|
| Hydrochloric Acid Solution, 6.0 N (1:1) | varies        | 500 mL | 88449    |
| Water, deionized                        | varies        | 4 L    | 27256    |
| Oxygen Scavenger Reagent Set            | _             | _      | 2446600  |

Consumables and replacement items (continued)

| Description                   | Quantity/test | Unit    | Item no. |
|-------------------------------|---------------|---------|----------|
| Includes:                     |               |         |          |
| DEHA Reagent 1 Powder Pillows | 2             | 100/pkg | 2167969  |
| DEHA Reagent 2 Solution       | 1 mL          | 100 mL  | 2168042  |

# Required apparatus

| Description                                   | Quantity/test | Unit   | Item no. |
|-----------------------------------------------|---------------|--------|----------|
| Bottle, square, with 25-mL mark               | 2             | each   | 1704200  |
| Dropper, measuring, 0.5-mL and 1.0-mL plastic | 1             | 20/pkg | 2124720  |

# **Optional apparatus**

| Description                              | Unit | Item no. |
|------------------------------------------|------|----------|
| Thermometer, non-mercury, -10 to +225 °C | each | 2635700  |

